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Background

In PWR [Pressurized Water (nuclear) Reactor] safety and optimization there are key issues
that rely on in-depth understanding of basic two-phase flow phenomena with heat and
mass transfer. Within the context of these multiphase flows, two bubble-dynamic
phenomena - boiling (heterogeneous) and flashing or cavitation (homogeneous boiling),
with bubble collapse, are technologically very important to nuclear reactor systems. The
main difference between boiling and flashing is that bubble growth (and collapse) in
boiling is inhibited by limitations on the heat transfer at the interface, whereas bubble
growth (and collapse) in flashing is limited primarily by inertial effects in the surrounding
liquid. The flashing process tends to be far more explosive (and implosive), and is more
violent and damaging (at least in the near term) than the bubble dynamics of boiling.
However, other problematic phenomena, such as crud deposition, appear to be intimately
connecting with the boiling process. In reality, these two processes share many details, and
often occur together.

Flashing occurs in flowing liquid systems when the pressure falls sufficiently low in some
region of the flow, reaching a metastable state where the local temperature is higher than
the saturated temperature at the reduced pressure of this expanded state. Then the
superheated liquid releases its metastable energy (stored as internal energy) very quickly
(even explosively), producing either pure vapor (bubble) or liquid-vapor mixture at high
velocity. Expansion effects in nuclear reactor systems often occur due to geometrical
effects, as for example in flows around solid design features where local flashing and
bubble collapse occur or in nozzles where flashing appears at locations where the pressure
is relatively low and the liquid superheated. In the case of two-phase blowdown (from the
superheated liquid state), bubble collapse is usually not important, but the flashing of
superheated liquid strongly influences critical flow rates. In other cases, besides the
performance limitations which this flashing (cavitation) may cause in flow systems,
subsequent bubble collapse may be responsible for damage to nearby solid surfaces.

Many nuclear reactor applications rely on convective nucleate boiling to efficiently remove
high heat fluxes from heated surfaces. Nucleate boiling is a very effective heat transfer
mechanism, however it is well known that there exists a critical value of the heat flux at
which nucleate boiling transitions to film boiling (Departure from Nucleate Boiling (DNB)
and boiling crisis), a very poor heat transfer mechanism. In most practical applications it is
imperative to maintain the operating heat flux below such critical value, which is called the
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Critical Heat Flux (CHF). In this case, the presence of a nearby solid surface is necessary for
the rapid supply of the latent heat inherent in the phase change. The presence of these
surfaces is known to modify the flow patterns and other characteristics of these multiphase
flows, and therefore must be interactively coupled with analyses of these phenomena.
Again, as mentioned above, DNB is believed to play an integral role in performance
degradation as well as the crud deposition problem. Despite several decades of intense
study a consensus explanation of the physical mechanism causing CHF is yet to be found,
even for the simple situation of pool boiling on a flat plate, let alone flow boiling in a rod-
bundle geometry, which is the situation of interest in nuclear reactors. Many theories have
been formulated, all of which rely on simple CHF models based on an idealized geometry of
the vapor/liquid interface. For example, the classic hydrodynamic instability theory of CHF
postulates an array of cylindrical vapor jets rising from the heater surface, the macrolayer
dryout theory assumes a smooth liquid layer underneath a mushroom-shaped bubble, and
the bubble interaction theories typically assume that nucleating bubbles are spherical.
However, a very different picture of the physical situation at CHF has been revealed by
recent studies [1,2] using sophisticated imaging diagnostics. Briefly, at high heat fluxes
there exist numerous dry areas on the surface (with length scales of 2-3 mm in the x- and y-
directions), dispersed within an interconnected network of liquid menisci (with length
scales <50 um in the z-direction). The geometry of the liquid/vapor interface is highly
irregular and its nature is dynamic, i.e., the liquid menisci advance into and retreat from the
dry areas as a function of time, due to various effects, e.g., liquid inertia (sloshing), capillary
forces (surface tension) and recoil forces (evaporation). Recently, good agreement has
been obtained by Nikolayev [3] based on the fundamental hypothesis that the boiling crisis
is triggered by the vapor recoil when liquid transforms into vapor. Our inability to
accurately predict heat transfer and heat transfer regime transitions (flow topologies) in
the real nuclear reactor two-phase flow conditions and fuel bundle geometry results in
increased safety margins and impedes the development of new fuel designs.

With the advent of increased availability of computational power and of a new generation
of methods and codes, the CASL program was recently instituted to foster significant
progress in the use of computational fluid dynamics (CFD) and multiphysics methods for
nuclear fuel design, thus leading to a drastic reduction in development costs and a
justifiable revision of safety margins. As recently observed at the European workshop on
“Two-phase Convective Flow Boiling Flow Modelling” [3], our ideas for a broad spectrum of
multiphase flow simulation improvements, as will be discussed subsequently, are being
echoed by others. In France, CEA, EDF, AREVA and IRSN have launched the NEPTUNE
project [4], aimed at providing tools describing two-phase flow and heat transfer that are
validated in the parameter range of the industrial applications, plus others covering the
entire spectrum of space and time scales. In the U.S., the CASL program has been recently
initiated to promote similar collaborative research on this subject at a wide scale.

For example, the two-phase flow phenomena occurring inside a Light Water Reactor (LWR)
fuel bundle includes coolant phase changes and multiple flow regimes which directly
influence the coolant interaction with the fuel assembly and, ultimately, the reactor
performance. The resolution of traditional sub-channel analysis codes is too coarse for
analyzing the detailed intra-assembly flow patterns, such as flow around a spacer element
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and it is now generally recognized that their basic modeling approach and computational
methods no longer represent state-of-the-art in the field of numerical simulation. New
codes need to be developed for the fine-mesh, detailed simulation of LWR fuel assembly
two-phase flow phenomena which take advantage of recent progress in Computational
Fluid Dynamics (CFD) and the rapidly increasing computational power of massively
parallel computers. Similar arguments can be made for the need for high-resolution
modeling of localized subcooled boiling and bubble collapse of Pressurized Water Reactors
(PWR) to predict performance degradation, especially with regard to the crud deposition
problem.

Because modern, high-resolution numerical methods/CFD codes divide the flow space into
much finer computational cells it is imperative that we not:

e Utilize traditional multiphase models which are mathematically ill-posed,
e Rely on traditional “flow regime maps” used in subchannel thermal-hydraulics
codes to evaluate the interface topology.

Traditional 6-equation, single pressure two-phase mixture models have a state domain in
which the square sound speed is negative which produces ill-posedness, non-hyperbolicity,
wrong wave dynamics, and inappropriate transient solutions. Such equations have been
used in the past because first order numerics were employed on course grids which
produced large enough artificial viscosity to render a solution. However, grid convergence
with such a scheme is not possible - an untenable situation. Using such equation systems
negates the possibility of utilizing modern high-resolution methods (second order or
higher), for example, finite volume methods based on Godunov methods with approximate
Riemann solvers.

Inter-phase interactions in multiphase fluids depend on both the area and the topology of
the interface. Traditional “flow-regime maps” are used in sub-channel thermal-hydraulics
codes to evaluate the interface topology from cross-section-averaged flow parameters.
Because CFD codes divide the flow space into much finer computational cells, they need not
rely on the traditional sub-channel flow regimes. Instead, they must evaluate the local
interface surface topology. The advantage realized with this approach is that the ensemble
of many computational cells, with relatively simple interface surface topologies, can
provide complex global topologies that include all the traditional sub-channel flow regimes.
With these simplified flow regime topological maps, which will necessarily depend upon
computational cell-size, only a few parameters need be used to determine the interface
surface topology in each cell. These parameters will be based on experimental data and
direct numerical simulation (DNS) (and DNS-like) of highly resolved phenomena on a small
scale, or DNS-like resolved interface simulations on an intermediate scale.



Direction

Because of the diversity of physical phenomena occuring in boiling, flashing, and bubble
collapse, and of the length and time scales of LWR systemes, it is imperative that the models
have the following features:

e Both vapor and liquid phases (and noncondensible phases, if present) must be
treated as compressible.

e Models must be mathematically and numerically well-posed.

e The models methodology must be multi-scale.

A fundamental derivation of the multiphase governing equation system, that should be
used as a basis for advanced multiphase modeling in LWR coolant systems, is given in the
Appendix using the ensemble averaging method. For the remainder of this work, focus
will be placed specifically on the compressible, well-posed, and multi-scale
requirements of advanced simulation methods for these LWR coolant systems. These
fundamental aspects are isolated from the general model for further examination
here because their correct treatment is key to advanced model/methodology
development.

Because of the expense of developing multiple special-purpose codes and the inherent
inability to couple information from the multiple, separate length- and time-scales, efforts
within CASL should be focused toward development of multi-scale approaches to solve
those multiphase flow problems relevant to LWR design and safety analysis. Efforts should
be aimed at developing well-designed unified physical/mathematical! and high-resolution
numerical models for compressible, all-speed multiphase flows spanning:

(1) Well-posed general mixture level (true multiphase) models for fast transient
situations and safety analysis,

(2) DNS (Direct Numerical Simulation)-like models to resolve interface level phenmena
like flashing and boiling flows, and critical heat flux determination (necessarily
including conjugate heat transfer), and

(3) Multi-scale methods to resolve both (1) and (2) automatically, depending upon
specified mesh resolution, and to couple different flow models (single-phase,
multiphase with several velocities and pressures, multiphase with single velocity
and pressure, etc.)?2

" That is, the effective, nonlinear system of first order partial differential equations.

? Specifically, a well-designed 2-pressure, 2-velocity, seven-equation two-phase mixture model (as in 1) can
be systematically reduced analytically to produce a 1-pressure, 1-velocity, five-equation model (as for 2)
capable of a DNS-like (Direct Numerical Simlation) resolved interface solution. If such a systematic reduction
is accomplished numerically on a local spatial level, then a general algorithm (such as 1) can be made to
reduce locally where appropriate to the interface resolved model (2), effectively giving an automatic multi-
scale treatment (as 3).



Such development will extend the necessary foundations and build the capability to
simultaneously solve fluid dynamic interface problems as well as multiphase mixtures
arising from boiling, flashing or cavitation of superheated liquid, and bubble collapse, etc.
in light water reactor systems. It entails development on two main fronts. The first requires
the derivation (design) of theoretical models for multiphase and interfacial flows whose
mathematical description (equation system) is well-posed and exhibits hyperbolicity, exhibiting
correct wave dynamics at all scales. The second requires the design of appropriate numerical
schemes to give adequate resolution for all spatial and time scales of interest. These models are
not as well known as conventional single-fluid models and pose significant numerical
challenges, e.g. the numerical approximation of non-conservative terms. In addition, these
numerical issues can pose theoretical questions such as shock wave existence in a multiphase
mixture, cell averages of non-conservative variables, etc.

Such two-phase flow phenomena occurring inside light water nuclear reactors includes,
especially with departure from nucleate boiling (DNB) and film boiling instability (boiling
crisis), coolant phase changes and multiple flow regimes which directly influence the
coolant interaction with the fuel elements/assemblies and, ultimately, the reactor
performance. Because of the inherent coupling, an understanding of these phemonena,
along with subcooled boiling and bubble collapse, is also key to gaining an understanding
of crud depostion in these systems [6]. The goal of CASL development needs ultimately to
provide models giving highly resolved details where necessary, simultaneously with large
scale vessel/component simulation by providing a well-posed, multi-scale model that will:

e Resolve interfaces for larger bubbles (direct numerical simulation, DNS-like) with
single velocity, single pressure treatment (interface capturing), and

e Average (or homogenize) the two-phase flow field for small bubbles with two
velocities, two pressures.

It is, of course, the aim of CASL to implement the resulting algorithms on modern parallel
computing machines for solving large-scale problems for the design and analysis of advanced
technology systems such as nuclear energy.

The primary, enabling feature of the INL (Idaho National Laboratory) multi-scale methodology
for multiphase flows involves the way in which we deal with multiphase mixtures. Our multi-
scale approach, which is similar that of the INRIA SMASH group (France) with whom we have
collaborated in recent years [5], is essentially to solve the same equations everywhere with the
same numerical method:

In pure fluid,

In multi-velocity mixtures

In artificial smearing zones at material interfaces or in mixture cells,
In phase transition fronts and in shocks,

There are several advantages with this approach:
e (Coding simplicity and robustness as a unique algorithm is used;
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e (Conservation principles are guaranteed for the mixture. Conventional algorithms are
able to preserve mass conservation only when dealing with interfaces;

e Interface conditions are perfectly matched even for the coupling of complex media
(capillary fluids, transition fronts) even in the presence of shocks;

e This approach is the only one able to deal with dynamic appearance of interfaces
(spontaneous flashing (cavitation) and boiling);

e These methods allow the coupling of multi-velocities, multi-temperature mixtures to
macroscopic interfaces where a single velocity must be present. This capability can
be illustrated simply by considering the example of a cloud of bubbles rising up in a
liquid to the surface, where a free boundary (interface) is present. Two velocities
must be considered for the bubbles rising, while a single velocity must be present
just after their crossing through the interface. It is also desireable to resolve large
bubbles in which a liquid with small bubbles lies outside our large bubble and/or
vapor with small droplets lies inside the bubble. This is the only method able to
deal with such situations.

Because of the broad spectrum of phenomena occurring in light water nuclear reactor
coolant flows (boiling, flashing, and bubble collapse, choking, blowdown, condensation,
wave propagation, large density variation convection, etc.) it is imperative that models
accurately describe compressible multiphase flow with multiple velocities. The high-
pressure and/or high-velocity conditions involved in these flows require that compressible
effects be considered for all phases (Recalling that effective sound speeds in two-phase
mixtures can be as low as 50-80 feet per second, effective Mach numbers well above 0.3
can easily result). Conventional models3 of two-phase mixtures having two velocities
present are represented with a system of six partial differential equations: two mass, two
momentum, and two energy equations. With the assumption of pressure equilibrium,
these models have a single pressure common to both phases. These models are not
hyperbolic and are ill-posed. This means that initial data and boundary conditions do not
fully determine the solution at the next instant in time. Wave propagation may have no
physical sense with such systems because the square of the sound speed may become
negative.

Baer and Nunziato [9] remedied this problem when they proposed an extended model with
seven equations. An additional differential expression (equation) of the pressure

3 The complexity of multiphase, multi-component, and/or multi-material flow dictates that they need to be
examined in an averaged sense. Traditionally, one would begin with known (or at least postulated)
microscopic flow relations that hold on the “small” scale. These include continuum level conservation of
mass, balance of species mass and momentum, conservation of energy, and a statement of the second law of
thermodynamics often in the form of an entropy inequality (such as the Clausius-Duhem inequality). The
averaged or macroscopic multiphase conservation equations and entropy inequalities are then constructed
from the microscopic equations through suitable averaging procedures, as shown in the Appendix. At this
stage a stronger form of the second law may also be postulated for the mixture of phases or materials. To
render the evolutionary material flow balance system unique, constitutive equations and phase or material
interaction relations are introduced from experimental observation, or by postulation, or from microlevel
numerical simulation) through strict enforcement of the constraints or restrictions resulting from the
averaged entropy inequalities. These averaged equations form the governing equation system for the
dynamic evolution of these mixture flows.



equilibrium condition, e.g. [7-12], describing the time evolution of the volume fraction*
replaced the pressure equilibrium assumption in the mixture. See the Appendix for
details. These terms control the rate at which pressure equilibrium is reached after wave
propagation (also as phase velocities equilibrate). Such models have 7- or 8- equations for
two-phase flow. (Note: Traditional 6-equation, two-phase models assume both phase have
a single pressure, are not hyperbolic, are ill-posed, and give wrong wave dynamics
solutions!). With this addition, the model became correctly (well-) posed and
unconditionally hyperbolic.

This model had little diffusion (because it was originally presented in the context of a
specific problem in detonation physics). The model is difficult to solve numerically, in
particular with modern algorithms based on the Riemann problem solution. This issue is
especially important for use with DNS-like interface resolving calculations because:

e This model involves two pressures and two velocities,

e Atan interface the jump condition corresponds to continuous normal velocities and
continuous pressures,

e In order to fulfill this condition it is necessary to relax the two pressures and
velocities to unique equilibrium values.

These issues can be resolved by using specific relaxation solvers, with locally infinite
relaxation parameters, to solve interface problems and multiphase mixtures with two
velocities.

This seven-equation two-phase flow model can be given in slightly different form [17] as

%9 ., %=ﬂ(p -p )+i
ot ! Oox 1 ’ P
6(a1p1)+ a(a]plul) =
ot Ox 1
o(a,pu) O(apul +ap oa
( latl 1)+ (e ‘alx ! l)zpl axl—/i(ul—uz)Jrrl“z
o(aypE) O|ley(pE +p )u oa ' '
( 2 ), ol — ) 1]=p,u18—xl—up1(pl—pz)—ﬂul(%—”z)”lEf

for one phase, coupled to the other phase similarly as

* Specifically, the volume fraction evolution equation is driven, at least in part, by a pressure relaxation effect.
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where for two phases the second volume fraction equation can be eliminated through the
saturation condition ¢, + o, = 0. We point out that we have here neglected pressure

differences that can be sustained due to relative velocity between the phases, e.g. [13], or
due to surface tension effects. We refer to these sustained (or steady-state or static)
pressure differences as structural or configuration pressures because they are due to the
structure or configuration of the phases. These additional effects can be sustained at
steady state - thus for very rapid volume fraction evolution these residual force balances
can become an algebraic closure relation. Such pressure differences can be easily
accommodated, as appropriate, with modification of the volume fraction evolution
equation and the interface pressure expressions in the momentum and energy equations.
We neglect these terms here for clarity of presentation and retain only the fastest
thermodynamical nonequilibrium terms. For two phases, itholdsthat I', +I', =0. In
addition to equations of state for each phase® closure relations for this system require the
determination of:

e The interface velocity u, and pressure p, representing the velocity and pressure,
respectively, that are exerted at the boundary of a cloud of bubbles or droplets,

e The average interface velocity ) and pressure p; that are exerted in the bulk of a
two-phase control volume,

e The relaxation parameters A and u that control the rate at which velocities and
pressures, respectively, relax to mechanical equilibrium.

> For example stiffened gas equation of state (SGEOS) given for each phase by:

pP+ryp
e( , u) =—

(r=1)
-1)CT

o(p.T)= (»-1)C,

pPtp,
h(T)=yC,T+q

v+q

7

g(p,T)z(;/CU—q')T—CUTlog q

(p+p )(7*1) +
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Originally, these relations were unknown, either estimated in limiting cases only, or
determined by experimental means. Also, with conventional numerical approaches, the
resulting partial differential equation (PDE) system (7), non-conservative and needing non-
trivial closure relations, is integrated numerically over space and time. This presents an
additional problem related to the numerical approximation of the non-conservative terms.
The numerical approximation of these models is a difficult task, not only because they
contain non-conservative terms, but also because they exhibit many types of waves. Up to
seven waves are present for correctly formulated models (a set of two acoustic waves and a
contact discontinuity are present for each fluid plus a volume fraction wave representing a
possible phase change front). These wave patterns increase the complexity of computation
of the fluxes. As mentioned, the presence of non-conservative terms poses difficulties,
especially with the occurrence of discontinuities such as interfaces and shocks [14-16].
However, in order to determine the closure relations indicated above and to cirumvent these
difficulties of the seven-equation PDE models [7-12], a new homogenization method was
constructed in [17].

This new averaging method, termed the Discrete Equation Method (DEM)?®, considers the
mixture at the discrete level, with a stencil composed of three computational cells (in 1-D).
In each cell, at each cell boundary and at each internal boundary separating the phases, the
Riemann problem (RP) of the pure fluid equations is solved. The RP solution provides all
local interfacial information. These RP solutions are then averaged in the computational
cell as done originally with the first version of the Godunov method, derived originally for
the Euler equations. In this context, the additional difficulties that occur, due to the
presence of internal material interfaces, material discontinuities at cell boundaries, and
variable sub-volumes, because of the phase presence in the cells, are addressed. The
philosophy, however, remains the same as with the Godunov method - the average RP
solutions are dealt with directly, not with discretized partial differential equations.

% The discrete equation method (DEM) is not only a homogenization method but is in fact a numerical method
that applies the fundamental ideas of the Godunov method to a two-phase control volume [18-20]. The DEM
proceeds in the opposite way to what is conventionally done (as described above). The solutions for the pure
fluid equations are computed at the scale of each inclusion, and then these solutions are averaged over the
fluids’ volumes inside the computational cell. More specifically, the pure phase conservation laws are
considered at the microscopic level. The method involves solving in every cell for each two-phase control
volume, at its boundaries and at its internal interfaces, an initial value problem between the various fluids
and their states. The solution of these interface problems is obtained using Riemann (or approximate
Riemann) solvers for the Euler equations. In fact, each pure fluid is governed by the Euler equations. All
Riemann problem solutions are then averaged over the phases control volumes, similarly as done with the
Euler equations and the Godunov scheme, to provide the corresponding numerical scheme for the averaged
multiphase flow equations. Indeed the result is a set of discrete equations that describes the two-phase
mixture involving interaction terms. These discrete equations correspond to a numerical scheme - one which
differs only slightly from traditional single phase, finite volume Euler solution methods. This model is
hyperbolic and well-posed. Moreover, not only does the method provide the numerical scheme, but it
implicitly contains the correct averages of interfacial pressure and velocity as well as relaxation terms
[19]. In fact, if acoustic Riemann solvers [Godunov] (weak wave assumption) are used and the limit is taken
as the cell size and time step go to zero, the 7-equation models are obtained with closure relations! (This can
be very useful for some theoretical considerations.)
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The resulting system of this averaging procedure is a rather complicated discrete system in
algebraic form, corresponding to the result of the Discrete Equations Method (DEM).
Though more general than the 7-equation model detailed above, the DEM model
surprisingly converges to the 7-equation model as Ax, Az — 0 under the weak wave

assumption, but with the added bonus that the closure relations for the various interface
variables are obtained, providing information which is easier to interpret than discrete
formulas [26, 27]. This approach has recently been applied to fully nonequilibrium two-
phase, steam-water nozzle flows in [20], wherein it was demonstrated that the DEM
approach could be integrated to stable steady state, an important capability when
considering LWR systems.

The Direct Numerical Simulation (DNS) or DNS-like simulation of interfacial flows is of
fundamental importance for the understanding and prediction of heat transfer between
fuel rods and coolant; DNS can be a valuable tool to predict critical heat flux, especially at
high-pressure conditions’. In order to solve problems wherein it is desired to resolve
interfaces separating pure fluids or pure materials (DNS-like simulations), the non-
equilibrium flow model with two pressures and two velocities is solved with relaxation of
these variables locally, in the vicinity of an interface, to equilibrium values (by setting
Aand u to large values). More specifically,

{+oo if e<a <l-¢
My A=

0 otherwise

where ¢ is a small parameter, e.g. 108,

This method resolves (captures, see below) interfaces with excellent fulfillment of interface
conditions in mixture cells that appear because of numerical diffusion at material
interfaces. Develop is in progress of an efficient all-speed or implicit time scheme for the
DEM method.

The multiscale aspects of light water nuclear reactor flows dictate the need to be able to
resolve interfaces of a specified size while homogenizing interface structures with sizes
below this specification. Advanced CASL methods will need to be able to accurately
resolve interface problems in extreme flow conditions (high pressure ratios and high
density ratios = 103), as well as compute the dynamic appearance of interfaces (interfaces
occuring from spontaneous generation of a phase not initially present), in a computationally
efficient manner. Moreover, the formulation and algorithm must be able to not only

’ Presently there is no credible simulation model or code able to deal with DNS of boiling flows. The
literature provides a few references dealing with this. For example in S. Shin and D. Juric, “Modelling three-
dimensional flow using level contour reconstruction method for front tracking without connectivity,” J. Comp.
Phys. 169 (2002) 503-555, two sets of incompressible Navier-Stokes equations are coupled with a front
tracking algorithm where jump conditions of mass, momentum, and energy are set. However, with each fluid
being considered incompressible, the volume rate of change of bubbles due to phase change is only
approximate. With such an approach, volume changes due to buoyancy effects cannot be correctly accounted
for. Lastly, contact angle modeling was not addressed.
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capture interfaces separating pure media but also capture interfaces separating
mixtures of fluids in which wave dynamics is also important. The DEM method can
resolve two-phase interfaces in a DNS-like manner if sufficient grid resolution is provided,
however it can be more sophisticated than is necessary when two-velocity mixtures are not
present on either side of the resolved interface. Because, in theory, an interface can be
resolved in a diffuse manner (with arbitrarily determined thickness) with complete
thermodynamics and with only a single-velocity, single-pressure, 2-temperature two-phase
model, attention will be focused next on consistently reduced models for this purpose.

This other option (within the unified hierarchy) consists in determining the asymptotic
model resulting from stiff mechanical relaxation, in various forms [28, 29, 30]. In the
context of two fluids, this results in a reduced set of five partial differential equations: two
phasic mass, one mixture momentum, one mixture energy, and one volume fraction
equation. This five-equation system includes the minimal physics necessary to provide
complete thermodynamics of each phase along with the interphase transition
thermodynamics to satisfy the outlined requirements. This system is less general than the
previous non-equilibrium system, but it is of particular interest for resolving interface
problems, where a single velocity is present. More precisely, it can be more appropriate
and simple, when considering extra physics extensions such as phase transition, capillary
effects, etc.

Unlike more common approaches, there is no need to use an Interface Tracking Method
(ITM), nor level set, nor interface reconstruction, etc. The same equations are solved
everywhere, and the interface is captured® with the 5-equation model. Termed the Diffuse
Interface Method (DIM), this model provides correct thermodynamic variables in artificial
mixture zones. It permits automatic merging, break-up, coalescence and extreme
deformation of interfaces. Though seemingly artificial, this model can handle very large
density ratios, and materials governed by very different equations of state, in multi-
dimensions [21]. Itis also able to describe multiphase mixtures where stiff mechanical
relaxation effects are present.

The reduced, 5-equation model is obtained from the seven-equation model above by
forcing mechanical equilibrium, i.e. pressure and velocity relaxation® are obtained by
taking the asymptotic limit, respectively, as 4 — o and 4 — o [22]. With inclusion of heat

and mass transfer between the phases, this yields:

¥ In gas dynamics, the debate about tracking methods (at that time “shock-fitting”) versus capturing came
about 40 years ago. The development of methods with limited artificial viscosity (Godunov type schemes)
and the increase in computational resources ended the debate in the 1980’s with the definite success of the
capturing methods.

° An illustrative example of the non-intuitive solution behavior that can accompany even simple relaxation
problems is given in R.]. LeVeque, Finite Volume Methods for Hyperbolic Problems, Cambridge University
Press, UK, 2002.
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are the mixture internal energy, the phasic mass fractions, and the mixture internal energy,
respectively. Each fluid is governed by its own convex equation of state (EOS)

e, =¢. (D),
which allows the determination of the phasic sound speeds
Ck = Ck(pkap) '

The mixture or equilibrium pressure p is determined for the particular case of fluids
governed by the stiffened gas EOS,
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for which the resulting mixture EOS reads
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p(p,e,ap,a,,Y.Y) =
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interphase mass and heat transfers are given, respectively, by

Y =v(g,-g)
Ql :H(TZ_TI)

where g, = h_—Ts, are the extended Gibbs free energies formed with temperature

IT. . . .
~L2 Obviously, v and H can be treated as thermodynamic relaxation parameters.

!

T =

To demonstrate the multidimensional capability as well as the dynamic creation of
interfaces, a two-dimensional test, involving a Richtmyer-Meshkov instabilitly (RMI), is
presented from [21]. The liquid is not pure and new interfaces will appear during
development of the instability due to cavitation effects. The shape of the resulting interface
and the entire flow field show a non-conventional behavior, never computed before, as the
model and method must deal with liquid-gas interfaces and the dynamic appearance of gas
pockets in severe conditions. The physical domain is 3 m long and 1 m high, with the left
part of the computational domain filled with nearly pure water and the right part with
nearly pure gas. They are initially separated by a curved interface, a portion of a circle with
0.6-m radius centered at x=1.2 m, y=0.5 m. The mesh contains 900 cells in the x-direction
and 400 cells in the y-direction. Both water and gas have an initial pressure of 1 atmoshere
and an initial velocity of -200 m/s (to the left). The initial density of water and gas is 1000
kg/m3 and 100 kg/m3, respectively. Top, bottom, and left boundaries are treated as solid
walls; right boundary is open. Both phases are treated with the stiffened gas equation of
state; therefore, both phases are assumed compressible. The water in the left part contains
a very small volume fraction of gas, 10-6, while the gas in the right part contains a very
small volume fraction of water, 10-6. The initial configuration is shown in the upper
graphic of Figure 1, and the mixture density contours at times 0.0, 1.9, 3.9, 5.8, and 7.8 ms
in the other graphics of the figure. When flow impacts the left wall, a right-traveling wave
propagates in the domain through the water/gas discontinuity. A conventional RMI
appears first. Then expansion waves are produced as the jet elongates. It results in
expanded zones near the solid boundary where gas inhomogeneities grow, producing the
dynamic appearance of gas pockets (white regions at the left boundary) and interfaces.
Because the pressure is very low in these zones, the jet's dynamics are modifed from the
conventional RMI in pure fluids. The various gas pockets near the solid boundary and in
the jet core are clearly visible in Figure 1. Relaxation terms present in the volume fraction
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Figure 1. Configuration and mixture density contours at 0.0, 1.9, 3.9, 5.8, and 7.8 ms.
Blue is high density, white is low, and others colors are intermediate.
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and energy equations are responsible for the dynamic appearance of these gas pockets.
This would be very difficult to accomplish with current sharp interface tracking methods.

This hyperbolic, well-posed system with five equations connects two limit models: A
mechanical equilibrium model responsible for acoustic propagation and formation of
metastable states, and a thermodynamic equilibrium model to enforce interface
conditions. The model involves five waves: u, u*c, ,and u =+ Coy that occur because of

relaxation terms v and H . Obviously, if we set these relaxation functions to zero (no
relaxation, i.e. there is no interphase mass and heat transfer) this strictly hyperbolic system
reproduces propagation of acoustic disturbances with characteristic wave speeds, u (3-
fold), u+c,,and u—c, where c, is the Wood speed of sound (mixture)

1 o a,
2 2 + 2"
pPC. PG PG

This sound speed has a non-monotonic behavior versus volume fraction. More will be said
of the thermodynamic equilibrium sound speed, ¢, , subsequently (footnote 10).

The general determination of the temperature relaxation parameter H for a two-phase
mixture with arbitrary interfacial area is a difficult issue, as also is that of the phase
transition kinetics parameter v, which depends not only on interfacial area but also on
local chemical relaxation (see five-equation model). To circumvent these difficulties it is
advantageous to choose these as infinite relaxation parameters, i.e. H,v — + o, but only
locally so as to retain metastable states. For example, in order to retain metastable states,
the relaxation parameters v and H can be set to zero for locations far from the interfaces.
At the interfaces they can be taken infinitely large, in order to fulfill equilibrium interface
conditions with mass transfer

+o if e<a <l-¢
v,H = )
0 otherwise

where, again, ¢ is a small parameter, e.g. 10-8. Interestingly, if this thermodynamic
equilibrium limit was taken globally, i.e. temperature and Gibb’s energy relaxation are
obtained by taking the asymptotic limit, respectively,as H — c and v — o, the three-
equation homogeneous equilibrium model would result?9.

' This relaxation method corresponds to the following (possibly locally, at interface only) limit system,
corresponding to the mixture Euler equations

op ~
—+V. =0
o V(i)
ag;” v -(pii ®ii + pI) =0
t



The situation is more difficult with bubbly flows because the interface is not a simple
contact surface (as in gas dynamics). Heat and mass transfer are present, rendering the
interface permeable, i.e. the fluids on each side of the resolved interface are not pure, they
are two-phase with a smaller, unresolved structural scale. Moreover, these transfers are
coupled to capillary and dissipative effects. Capturing this type of interface is not only a
numerical issue, but also a modeling issue. Progress has recently been achieved in this
direction.

A diffuse interface model of compressible capillary fluid was derived and solved in [31].
Key points of this model compared to Cahn and Hilliard [32] type models is that no
capillary length is introduced (no special resolution of the interface is needed) and

a’g—E+V-[(pE+p)ﬁ]=0
t

where the mixture density is p = a,p, + &, p, and the mixture internal energy is pe = a,p,e, + a,p,e,. The

total mixture energy is still defined by £ =e+ % .
This system is closed by the three thermodynamic equilibrium conditions
p=DP,=P
L=T,=T
8 =8,
With the pressure and temperature equilibrium conditions above and with the help of the SGEOS, each phase

variable can be expressed as a function of pressure and temperature. The definitions of mixture density and
internal energy become

p=a,[p,(p.T)=p (p.T)]+p (p.T)

1
e :;{az [pz (p’T)ez (p’T)_pl (p’T)el (p,T)]-i—pl (p’T)el (p,T)}
The equality of phasic Gibb’s energies above reduces the mixture EOS and this system to
-p (T
a, (T) -2 pl( )
P> (T)_pl (T)
1

e(T) =;{az(T)[pz(T)ez(T)—pl(T)el (7)]+p,(T)e (T)}
This last equation can be numerically solved for T (substitute the first equation into the second for «, ),

given p and e from the PDE system solution. It allows the determination of &, with the first equation and

of p with the mixture EOS. Thus, this system is closed. By using the sound speed definition = (Gp/ap)s

the following expression is obtained for the thermodynamic equilibrium mixture speed of sound:

2 2
L&, @ fan (d_j YA (d_j
pceq plcl pZCZ Cp,v dp Cp,/ dp

Note the Wood formula is recovered with the first two terms of this expression. This limit model is again

hyperbolic with the characteristic wave speeds u +c, , u—c, ,and u. Obviously, ¢, <c, . Aninteresting

physical observation can also be made: The evaporation front speed in metastable liquids corresponds to
those of acoustic waves of the relaxed (thermodynamic equilibrium) system.
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arbitrarily large density ratios at interfaces can be considered!!. The heat and mass
transfer at interfaces resulting in phase transitions were solved in the context of diffuse
interfaces in [22]. The main issue was related to the thermodynamic closure which is
usually done with van der Waals type equation of state in Cahn-Hilliard-Korteweg theory.
With this theory, phase transition corresponds to a thermodynamic transformation, which
results in two inconsistencies:

e The phase transition time is absent in this description, and

e When capillary effects are absent, the square sound speed may become negative,
resulting in ill-posedness.

With the 5-equation, diffuse interface capturing approach, phase transition corresponds to
a kinetic transformation. It uses non-equilibrium and equilibrium thermodynamic
considerations, but the key point is the kinetic representation that solves the two preceding
issues. Incorporation of interfacial surface tension and heat and mass transfer effects gives
a simple, efficient and robust method that can be used to resolve fundamental boiling
issues in a DNS-like manner similar to the cavitation example above. Furthermore, the
various components employed in this method are general enough to merit coupling with
additional complex physics and chemistry, e.g. to address the unwanted deposit of
constituents dissolved in the coolant as a result of localized boiling -- the so-called crud
deposition problem. An excellent example using the diffuse interface method to resolve
interfaces with phase change due to intense flashing, and with inclusion of a third, non-
condensing phase was shown recently in [33].

Figure 2 illustrates the hierarchy of the unified, consistent relationships between the
generalized DEM, reduced models, and DIM methodologies used for multiphase flows with
consistent mixture homogenization and interface capturing treatment. The most
general DEM method begins in the top left corner. Immediately below that is indicated that
if the limit is taken as the grid parameters go to zero, and a weak wave or acoustic Riemann
solver is used to relate differential quantities, the fully nonequilibrium seven-equation PDE,
with non-conservative terms results. Progressing down the left column with successively
more relaxation parameters being globally taken as numerically large, produces
consistenly reduced models for homogenized mixtures - the five-equation PDE system in
mechanical equilibrium, then the three-equation homogeneous equilibrium model in both
mechanical and thermal equilibrium. If the various relaxation parameters are relaxed only
locally, specifically in the neighborhood of the interface, then DIM models result for
resolving an interface via capturing, as shown in the corresponding right column.

CASL research should be ultimately aimed at developing unified and well-designed
physical/mathematical models along with high-resolution numerical solution methods for
general multi-scale, multiphase flow. To test this approach, thereby reducing the
uncertainties of implementation, in recent INL internal reasearch efforts, analytically

'See Jamet, D., Lebiague, 0., Coutris, N., and Delhaye, ].M.,”"The second gradient method for the direct
numerical simulation of liquid-vapor with phase change,” J. Comp. Phys. 169 (2001) 624-651, where very
limited density ratios are considered.
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reduced models (using asymptotic expansions) of the general mixture equations were built
and used to produce DNS-like, interface-resolving solutions for multiple compressible fluid
phases. Because of the inherent weaknesses of sharp interface methods (SIM), e.g. level-set
methods, for DNS-like simulations, most notably their inability to dynamically create
interfaces and to solve interfaces separating pure media and mixtures, we focused on a DIM
which does not exhibit these weaknesses. As discussed above, the DIM considers interfaces
as numerically diffused zones corresponding to artificial mixtures created by numerical
diffusion. The determination of thermodynamic flow variables in these zones is achieved
on the basis of multiphase flow theory. The challenge, however, was to derive physically,
mathematically, and numerically consistent thermodynamic laws for the artificial mixture
of the diffused interface which would fulfill correct interface conditions. INL research
works in this area are documented in [21]. A huge advantage of this approach is that the
same algorithm is implemented globally in both pure fluids and in mixture zones. For this
research, a single velocity, non-conservative hyperbolic model was developed, with two
energy equations involving relaxation terms, which fulfills the equation of state and energy
conservation on both sides of interfaces and guarantees correct transmission of pressure
waves across them. This formulation considerably simplifies numerical resolution within
the context of diffuse interfaces. Codes have been constructed to successfully demonstrate
this methodology [21-24].

Multiphase formulations have been developed to give the ability to solve problems
involving both heterogeneous mixtures of materials and interfacial flows involving

compressibility and phase transition. In particular, for the DNS-like simulation of
interfacial flows, of prime importance for the nuclear industry for reactor safety and
optimization, the aim is to compute the critical heat flux conditions that involve a
competition between bubble growth, surface tension, contact angle effects, heat and mass
transfers at interfaces. Contrary to the approach employed with other ITM methodologies,
the approach espoused here embraces a general model that accounts for complete
thermodynamics in both phases.

All of the methods discussed or demonstrated above have been successfully demonstrated
at the INL by utilizing explicit time integration. Under CASL, two major improvements
must occur:

(1) The methods must be employed with some kind of a preconditioner to allow
accurate low Mach number solutions (especially for liquid phases) and, indeed, all-
speed solutions!2. An initial investigation of the extension of the DIM to an all-speed

'2 The models of the type described in this report, with volume fraction evolution equation containing terms
proportional to simple phasic pressure difference normalized by a coefficient time scale, will reduce to the
corresponding single-pressure model in the incompressible limit (for both phases). These models are
essentially compressible in nature and equilibrate with an acoustic time scale. As written, they cannot
describe a residual interphase pressure difference that may persist in the much slower non-acoustic or even
incompressible limit. If such pressures are believed significant, the volume fraction evolution equations need
only be modified to include time scales for equilibration determined by inertial rather than (or in addition to)
acoustic effects. Irrespective of the time scale, the presence of terms proportional to pressure differences is
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relaxation scheme for interface flows with surface tension has been recently
reported in [35].

(2) To relieve time step restrictions due to stiffness and to achieve tighter coupling of
equations, all methods need to evolve with implicit time integration.

With the construction of these methods utilizing implicit time integration, numerical
integration of the stiff relaxation terms can be performed (thereby bypassing the
asyptotically reduced models) to produce a truly multi-scale, unified method which can
handle two-phase mixtures at the large, or under resolved scale, and DNS-like two-phase
modeling on the small, or highly resolved, scale. Simple, efficient and robust algorithms
will be developed to solve the well-posed models. The various ingredients employed in
these methods will be general enough to accommodate extensions to enlarged problems
involving complex multiphysics. Using the fractional step methods typically applied, and
miss-applied, to calculate these types of initial value problems, that consist of different
kinds of physics with multiple time-scales, some of which should be treated implicitly,
requires some precautionary measures to avoid splitting and conditioning errors.
Appropriate fully implicit methods must be pursued which will allow integration over the
fast time scales for slow speed flows using a Jacobian-Free Newton-Krylov method with
physics based preconditioning to allow tightly coupled solutions of the multiphysics
phenomena, e.g. as in [25], inherent in nuclear reactor core applications.
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Appendix

Well-Posed, Averaged Conservation Equations for Compressible Multiphase,
Multi-Component, and Multi-Material Flows

Introduction

Many important “fluid” flows involve a combination of two or more materials having different
properties. The multiple phases or components often exhibit relative motion among the phases
or material classes. The microscopic motions of the individual constituents are complex and the
solution to the micro-level evolutionary equations is difficult. Characteristic of such flows of
multi-component materials is an uncertainty in the exact locations of the particular constituents
at any particular time. For most practical purposes, it is not possible to exactly predict or
measure the evolution of the details of such systems, nor is it even necessary or desirable.
Instead, we are usually interested in more gross features of the motion, or the “average” behavior
of the system. Here we present descriptive equations that will predict the evolution of this
averaged behavior. Due to the complexities of interfaces and resultant discontinuities in fluid
properties, as well as from physical scaling issues, it is essential to work with averaged quantities
and parameters. We begin by tightening up, or more rigorously defining, our concept of an
average. There are several types of averaging. The published literature predominantly contains
two types of averaging: volume averaging [Whitaker 1999, Dobran 1991] and time averaging
[Ishii 1975]. Occasionally combinations of the two are used. However, we utilize a more
general approach by adopting what is known as ensemble averaging.

When the physical system has a large amount of variability, a natural interpretation of the
meaning of predictions is in terms of expected values and variances. If there are many different
events, or realizations, possible, then the expected value is naturally an “average” over all of
these events, or the ensemble of realizations. The ensemble then is the set of all experiments
with the same boundary- and initial-conditions, with some properties that we would like to
associate with the mean and distribution of the components and their velocities. A realization of
the flow is a possible motion that could have happened. Implicit in this concept is the intuitive
idea of a “more likely” and a “less likely” realization in the ensemble. Therefore, as we shall see
shortly each ensemble of realizations, corresponding to a given physical situation, has a
probability measure on subsets of realizations. The ensemble average is the generalization of the
elementary idea of adding the values of the variable for each realization, and dividing by the
number of observations. The ensemble average then allows the interpretation of phenomena in
terms of repeatability of multi-component flows.

One of the nice features of ensemble averaging, as opposed to volume averaging, is that
ensemble averaging does not require that a control volume contain a large quantity of a particular
component in any given realization. Consider the following example, taken directly from Drew
and Lahey (1993), where the average of a particle-fluid mixture is of interest. Gas turbines are
eroded by particulate matter suspended in the gas stream passing through the inlet and impacting
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on the various parts of the machine, e.g. the turbine blades. The trajectories of individual
particles moving through the gas turbine are very complicated, depending on where and when
the particles enter the inlet of the device. Such predictions are, fortunately, seldom required. A
prediction, however, that is of interest to the designer is the average, or expected values, of the
particle flux (or the concentration and velocities of particles) near parts in the device that are
susceptible to erosion. Since the local concentration of particles is proportional to the probability
that particles will be at the various points in the device at various times, and the particle velocity
field will be the mean velocity that the particles will have if they are at that position in the
device, the design engineer will be able to use this information to assess the places where erosion
due to particle impact may occur. Notice it may be that there are no times for which there will
be many particles in some representative control volume (or representative elementary volume,
REV). So, volume averaging, which depends on the concept of having many representative
particles in the averaging volume at any instant, will fail. The appropriateness of ensemble
averaging is obvious. Here the ensemble is the set of motions of a single particle through the
device, given that it started at a random point at the inlet at a random time during the transient
flow through the device. Clearly the solution for the average concentration and average velocity
gives little information about the behavior of a single particle in the device; however, the
information is very appropriate for assessing the probability of damage to the device. Similar
examples could be given where time averaging will fail, but where ensemble averaging is again
appropriate.

The ensemble average is the more fundamentally based than either time or volume averaging. In
fact, both time and volume averaging can be viewed as approximations to the ensemble average,
which can be justified, respectively, for steady or homogeneous flow [Drew and Passman 1999].

Ensemble Averaging

A general method is presented here, based on the ensemble averaging concept [Kashiwa &
Rauenzahn 1994, Lhuillier 1996, Brackbill et.al. 1997, Drew & Passman 1999], for developing
averaged conservation equations for multiple materials, any one of which may be at point X, at a
given instant #. With this procedure, the most likely state at a point (the expected value) will be
determined simultaneously with which material is most likely to be found at that point. Imagine
running an experiment many times and collecting data about the state of the flow at each point x
and time . This information could include which material or phase is present, material density,
velocity, pressure, temperature, concentration, etc. From this information, one can compute the
ensemble average. The ensemble average of a generic property O, of a fluid or material in a

process is an average over the realizations

- 1 & -
(@) (%) =7~ 2.0, (%:1). (1)

R r=l

where N, is the number of times the process or experiment is repeated, and is a large number.
Now imagine that many of the realizations are near duplicates, i.e. they are essentially the same
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state, with N occurrences. We can then rewrite the sum over the realizations as a sum over the
number of states N

=y ——20,(T) )

N(x,1T)
R

limit of an infinite number of repetitions of the experiment, with a sum over all of the states, we
have replaced the summation with an integral form in the definition of the ensemble average.

More correctly, because J f(%,6T)dl =1.0 , werefer to f(%,7,T) as the probability density.

alll’

where f ()?,t,F) = is the probability of the state I" in the ensemble. Note that in the

The state is the full thermodynamic description of the matter at a point X and time t. For
example,

Postly 1y, Do, Ty»
_ 1 =1 1 2 =272
r_ po:u())h():poyuo;h()y."y (3)
XX,

where:

X, (X,t) phase or material indicator function :=1if material k is present
=0 otherwise

Lo phase or material density

u, phase or material velocity

h, phase or material specific enthalpy

Do pressure

7, deviatoric stress

yox species partial density

U, species velocity

hy species partial enthalpy ,

with
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Po = Zpg

species

Doty = Z Doty

species

Poy = il -

species

Other properties may also appear in the above thermodynamic state such as the phase or material
temperature §,, the phase or material specific internal energye,, and the phase or material

specific entropy s,, .

In a typical multiphase flow, the ensemble averages of interest may include

Material k volume fraction : o, = <X k>
Material k bulk average density : 5, = (X, p,)
X
Material k intrinsic average density : P = < d '0°>
&

Species s in material k bulk average density :

Species s in material k intrinsic average density : P, =

— _<ka0ﬁo> <ka0ﬁ0>

Material k velocity : u, = ~ =
Py eryon
X, o F X,p.E
Material k total energy : E = < "’?0 °> = < o °>
Py e7yon
X X
Material k entropy : s, = < "’f) °S°> = < P °S°>
Pr o, Py
Mean mixture stress : Z = <~0>
X
Mean k — material stress : I = < k ~°>
o
Pressure (single pressure model ) : p= < p0>
X
Pressure in k — material : Dy = < P °>
a,

From a physical viewpoint, the bulk average density of a phase represents a summation of all of
the density values that occurred for that phase, divided by the total number of experiments run.
The bulk average density corresponds intuitively to the idea of the mass of phase k£ per unit
volume of mixture, or the observed material density. On the other hand, the intrinsic average
density physically corresponds to a summation of all of the density values that occurred for that
phase, dividing by the number of times in which that phase occurred in the experiments. The
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intrinsic average density corresponds intuitively to the idea of the mass of phase k per unit
volume of phase k, or the true material density. Some researchers prefer to work with bulk
average densities [e.g. Kashiwa and Rauenzahn 1994] while others prefer working with intrinsic
densities [e.g. Drew and Passman 1999]. This is mostly an issue of convenience, since one can
easily be converted to the other. Here we will use intrinsic averages. Henceforth, when we say
average, we shall mean intrinsic average unless indicated otherwise.

For a reasonably broad range of conditions (with common substances), the exact balance
equations, valid inside each material, are

Lo =—p,V-u, Material mass conservation 4)
Po=—pyV-u,-V-p, (Zig - iio)+ iy Species mass conservation (5)
poﬁo =V-T,+p,g Material momentum balance (6)
pE,=V- (Z’ o Uy ) +V-q,+p,g-u,+p,E, Material energy conservation (7)
PoSo = % -V (%) Material entropy inequality , (8)

0 0

For these microscopic balance laws the material derivative has been used, which is defined as
Y aQo -~ . . .
0, = EJF u,-VQ, Material derivative . 9)

Let us assume that the total variation of f in the phase space (Tc,t,l") i1s [Kashiwa and
Rauenzahn 1994]

of Lo dr
o TVl oR = (10)

where we are assuming that as we follow a material point through phase space its probability of

occurrence remains constant. Various moments of this equation can be formed, first by
multiplying equation (10) by Q,, and then averaging this result. It can be shown [Kashiwa and

Rauenzahn 1994, here corrected)] that the resulting equation is
0 ~ : ~
5<Qo>+v'<Qouo>:<Q0+Q0V'”0>- (11)

This result is called the moment evolution equation and the details of its derivation are given in
the Appendix supplement at the end. The averaged conservation equations are obtained by

32



letting our generic O, be replaced by various “meaningful” functions and then by performing
judicious manipulations on the equations to bring about physically useful forms of the equation.

Mass Conservation

By letting O, = X, p, in equation (11) we get

o(X )
%""v'()(kpoﬁﬁ:<kao+kao+kaov'ﬁo>
:<ka0+Xk (p0+p0V'b70)>-

Introducing the pure material (microscopic) mass conservation equation and the definition of
average results in

oa ~ -
#pk"_v'akpkuk :<kao>' (12)

Since we are taking time- and spatial-derivatives of functions that are not smooth, this averaged
mass conservation equation is to be interpreted in the sense of distributions, or generalized
functions [Gelfand and Shilov 1964]. Let us examine the right hand side of this equation in
more detail. From the definition of a material derivative we know that

ox,
ot

X, =—%+ii,-VX,

in a generalized function sense. On the other hand, letting u,, denote the velocity of an interface

of phase or material k, the material derivative of X, following the interface velocity vanishes

oX, -
+u
ot

int V)(k = 0 :
This result can be easily seen by first considering points not on the interface where either X, =0

or X, =1 and the partial derivatives both vanish, and thus the left side of this equation vanishes

identically. For points on the interface, which also move with the interface velocity, the function
X, 1s a jump that remains constant so their material derivatives following the interface vanish.

Therefore we can write
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- ox, . oX,
<ka0>: Po ( 8tk +”0'Vij_£ 61k ‘H‘im'Vij

(13)
=0
= <,00 (ﬁo _Z_jint)'VXk> ’
and the averaged mass conservation equation becomes
%"'V (O Pyl = <:00 (td, — i) VXk>
ot : (14)

_ mass
= Qe

We note that VX, has the sifting property of the Dirac delta function(al). Thus the only
contributors are the material interfaces. VX, is aligned with the surface unit normal vector
pointing to phase k£ [Drew 1983, Kataoka and Serizawa 1988]

Thus the Q" represents the flux of mass to phase k£ from the other phases via the interface,

usually just referred to as phase change. With no storage of mass at an interface the mass
conservation further requires

no.of phases
QZ1GSS — 0 . (15)

k=1

At this point, it is convenient to introduce for later use, the concept of interfacial area density of
component k. Defined as

A, =—(n-VX,),
where 7, is the unit external normal to component £ , it is the expected value of the ratio of the

interfacial area (in a small volume) to the (small) volume, in the limit as that volume approaches
Zero.
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Generic Conservation Equation

To more expeditiously derive the other conservation equations, let us first derive the averaged
balance equation resulting from a generic, microscopic balance equation. Consider the generic,
microscopic balance equation

0 _
%+V-powou0:V-J0+pogo, (16)

or

d(po‘//o)

i +(pol//0)V'L70=p0l/70=V'J0+p0g0. (17)

Equation (16) and (17) hold at each point where sufficient smoothness occurs for the derivatives
to be taken, as does its generic jump condition

[[pol//o(ﬁo_ﬁint)""]o]]'ﬁ:m (18)

where y, is the conserved quantity, J, is a molecular or diffusive flux, g, is a source density,
and m is the interfacial source of y,. The symbol [[ . ]] here denotes the jump in the enclosed

quantity across an interface. Obviously, these quantities must be added to our state space, e.g.

r— Po Uy, W0, ‘ (19)
X, X,

Let us also define averages of these quantities as

<kaoV/o>
P

(Xio)
ay

<ka0g0>

="
G Py

P =

J, =

=~

By letting O, = X, p,i, 1n equation (11) we get



X
w+v.<){k%%ﬁo> <M+kao%v .;,0>
ot dt
. d _
= <kao‘//o +X, M+kao§//0v'uo>

. d ;
= kao'//o>+<Xk [%WO%V%D

= V-XJ> (o VX )+ ooy, (i, - ,,,,) VX, )+(X,08)
:V'<XkJ0>+<ka0g0 <|:p0‘//o ”0 mt J:l VX>

Introducing the fluctuating velocity

Uy =Uy— Uy

into this expression finally results in

0 _ _,
%-’_v'akpk‘/lkuk:v'ak‘]k_v'<ka0W0uk>+akpkgk <|:poWo uo mt J] VX>
=V-a,J, _v'<kaoWoﬁ/,c>+akpkgk+<pol//0(ﬁo mt) VX> <J0'VXk>
_v ak.j +V akJFlltct+akpkgk Qmassl//lnt+Ql//
(20)

(X, p, i)
a,

where J;"" =~ is the flux of y due to fluctuations in the phase k velocity, y," is

the effective value of y that is transferred to phase k& from the other phases due to mass
transfer, or phase change, and Q) is a flux of y to phase & not due to bulk mass transfer from

the other phases. This is our generic, averaged balance equation. To obtain balance at the
interface, our generic jump balance equation requires the constraint

no.of phases )
QY+ QY = M, 21)

k=1

where M = <m> is the expected net effect of all the interfacial  -source terms.
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Species Mass Conservation

The microscopic species mass balance equation can be written as

P,
or

+V . piiiy =7, (22)

where p; is the species partial density, #, is the species bulk velocity, and 7 is the generation

or source of the species due to chemical reactions. The species mass balance equation is not
usually written this way because we usually don’t know much about individual species
velocities. Instead, it is usually cast as

S

Vil =V p; (@, — iy ) +7* (23)

because we have (to a certain extent) acquired empirical knowledge of the behavior of the first
term on the right hand side of this equation, as we shall see shortly. Let us now recast this
equation as

0 ps ps - ps . N 7
_[p0_0J+v'(po_ouoj=V'{po_o(uo_”0) TPy (24)
ot Po 0 Po Po

which is in the form of our generic, averaged balance equation (20) with the assignments of

Po (= s F
Vo= —"" Jo =P, 0(”0_u0) & ="
Po Lo Lo

Thus the averaged species mass balance equation is
%(kaé%v (Xopsiin) =V (X5 (i =y )+ (X, )+ ([ s (g =i, ) = i (1 =10y ) |- VX, ).

Again introducing the fluctuating velocity and the definitions of averaged quantities, our final
form of the averaged species mass balance equation is

802;,01{ +Vea, pu, =V .<X P (ﬁo —1, )> relative species flux
—V- <X o Uy > Sfluctuational diffusion
+<pg (ﬁO _ﬁint ) : VXk> phase Change (25)

- < £ (ﬁo — 1, ) VX k> mass exchange
+R; chemical reactions
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where we have defined the average generation rate in phase k due to chemical reactions as

R; = <X;;V\> .
k

Momentum Balance

The averaged momentum balance equation results from the generic, averaged balance equation
(20) with the assignment of

to give

Oy Py

D015 = (T, T e 857 4T (20

where the fluctuating stress T, and the interfacial momentum source Q" are given by

<ka0ﬁ1'c Uy >
27

Fluct __
Zk =

Q" =—(T,-VX,).

The averaged interfacial momentum balance constraint (jump condition) is

no.of phases

mom —int (~ymass
Q7" +u," Q)

(27)

surface tension
k=1

where M

surface tension

is the interfacial momentum source, i.e. surface tension source.
Energy Conservation
The assignment of
1. . L L
‘//o:Eozeo+§uo'uo Jo =T, -y +4, 8o =80 Uyt &

to the variables of the generic, averaged balance equation (20) gives the averaged energy
conservation equation
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0 1. , - 1. : 0\ =
a_takpk(ek"'E”k'”k+elfle+v'akpkuk(ek+Euk'”k‘*‘e/flezv'[ak(]:k+Zlf]ua)'uk]

—-V-a, (qk+qlflu6t)+akpk (8k +g, 'ﬁk)

energy mom . ~int
+Q "+ Q" - u)]

S
mass int —int —int
+Q7 (ek +5uk U |,

(28)
where
. (X, pyiy -0y o
e/ =D K KL Sfluctuation kinetic energy
2 ap
=1 = =1 (=1 =
— Fluct <kaouk€k> <Xk7:0 '”k> 1 <ka0”k (”k Uy )> .
g, ‘= —— + + — Sfluctuation energy flux
a, a, 2 a,
Sluctution internal energy flux  fluctuation shear working Sfluctuation kinetic energy flux
_ <X Po€o >
& =—"-"> energy source
Py
Qe = <c}0 VX k> interfacial heat source
Q" = —<Z o Uy VX k> interfacial work .

The averaged interfacial energy balance constraint (jump condition) is

no.of phases 1
energy mom  —int mass int —int —int | __
Q" +Q" u" + Q) (ek +Euk ‘U, )—f (29)

k=1
where & is the interfacial energy source.

The kinetic energy associated with the velocity fluctuations, e, , is a type of “turbulent”

kinetic energy. Sometimes the sum e, +e, " is interpreted as the effective internal energy per

unit mass of phase & .

It is sometimes useful to have an expression for the balance of fluctuation kinetic energy, e, .
Its evolutionary description is derived by introducing the partition u, =i, -, into the

microscopic pure phase momentum balance, taking the dot product of this equation with X, ,
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then performing the statistical average over configurations (keeping in mind that <X i poﬁ’>

vanishes) to obtain [details are left to the reader, see e.g. Nigmatulin 1990]

Fluct
k — Fluct __ Fluct |, x7
%y Py 7"' apy Ve = oy T Vi,

Ly N 30
_v_<kao(“k'”k)“k G0

) >+<Xkﬁ;-(vro+pogo)>
This equation bares some similarity to the equation of evolution of the fluctuational kinetic

energy in a single-phase turbulent fluid [Wilcox 1998]. The first term on the right side describes

the influence of the gradient of i, on the development of e, ', the second term is expected to

diffuse e/, and the last term represents the power developed by the stresses and external
forces [Lhuillier 1996].

For most multiphase flows, including some very (conceptually) simple flows such as gas flow

through a packed bed or through a pebble-bed nuclear reactor, the nature of e/ is somewhat

different than that of a turbulent single-phase flow. Contrary to a one-phase fluid in which the

fluctuations disappear for slow flows, these fluctuations for a multiphase flow exist however

slow the flow. For this reason, e, that is produced by hydrodynamic interactions between the

phases is sometimes called pseudo-turbulence [Lhuillier 1996].

Entropy Inequality

The local form of the entropy inequality (8), sometimes called the “Second Law of
Thermodynamics,” is used to place restrictions on the constitutive relations used to give unique
phase or material behaviors. With the assignment of

q &
Vo =15 Jo:__o go:_o
0,

to the variables of the generic, averaged balance relationship (20) the averaged entropy
inequality results,

—a“kaf 4V - o800, 2 V0t (D, + D)+ p, S, + QT 4 Qs (30)
where
8
$, =—1—2L entropy flux
a,



- ’ X S!ﬁ!
it = J“ZM Sluctuation entropy flux
k

< Y 0 0>
Sv 0
k

= entropy source
akpk

Qrer = <% VX k> interfacial entropy source .

0

This entropy inequality corresponds to what Drew and Passman (1999) call the microscopic
entropy inequality. A macroscopic entropy inequality can be obtained by summing inequalities
(30) over all of the phases or materials present in the mixture [Truesdell 1984 and the other
authors contained therein]. The macroscopic entropy inequality is useful for placing restrictions
on the phasic or material interaction constitutive relations. The averaged interfacial entropy
inequality (jump condition) is

no.of phases

Qimmpy + anassslinl 2 0 . (3 1)

k=1

Volume Fraction Propagation Equations

There remains one very important relationship to derive, a dynamic relationship that effectively
reflects boundary conditions at the microscale. It accounts for the fact that the constituent
volume fractions can change without affecting the gross motion and, in a sense, models the
microstructural force systems operating in the multiphase mixture. Beginning with the previous
Lagrangian interface material derivative relationship for X, ,

ox,
ot

+ii,, VX, =0,

this equation is averaged to give

an +ﬁint : V‘Xvk = 8Xk + <ﬁint : V)(k >
ot ot

0 _
:5<Xk>+<uim VX,)
oa _
B 6tk +< im'VXk>:0



Introducing the fluctuating interface velocity

a;k (i1, VX, ) = %+<(ﬁ, +ﬁ,’)-VXk>
~9% 4, VXk>+<ﬁ,' VX,
ot
oo,

where Q" (for which a constituitive description is needed) is the driving function for the change

of volume fraction ¢, . In summary, this equation is written as

80? +ii, Ve, =Q. (32)

Because of the central role that this volume fraction propagation equation plays in modern, well-
posed two-phase flow models with correct wave dynamics, we dedicate the next section to its
examination.

Seven Equation, Two-Pressure, Two-Velocity Hyperbolic, Well-Posed Models for Two-
Phase Flows

Prior to 1981 there had been attempts to remove the ill-posed nature from the full, two-phase
flow equations, e.g. [Ransom and Scofield, 1976], [Stuhmiller, 1977], [Rousseau and Ferch,
1979], [Banerjee and Chan, 1980], [Hancox et.al., 1980], as well as others. All of these
researchers were trying to gain closure of this equation system (the classical 6-equations system)
through algebraic means — and were meeting with only limited success.

In 1981 [Nguyen, 1981] presented a paper identifying the missing ingredient in compressible
two-phase flow. In this paper Nguyen utilized the entropy production for each phase to perform
an Onsager-type analysis wherein a bilinear form in the thermodynamic fluxes and their
conjugate forces was obtained. From this he arrived at the so-called phenomenological laws, one
of which, in first approximation is:
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oa, oa, J (33)

-p.=L | —F+w —=
Py —P; ak( o "o

where the notation is standard, with w, denoting the z -component of phase k velocity and L,

denoting a phenomenological coefficient, possibly to be “obtained from the flow structure.” To
complete the set of closure equations, Nguyen proposed to define the interface pressure p, as

p; :%Z[pk — P (prz )] (34)

where &, was to be defined consistently with the physical situation of interest. Nguyen

furthermore deemed it reasonable to assume that the phenomenological coefficients were equal
or

L

o =Ly, =L

a2 a

With these assumptions Nguyen then obtained a 7-equation model with real characteristics which
was hyperbolic and which could be formulated as a well-posed initial-value problem.

However, what Nguyen did not do (at least in that paper) was the following useful manipulation.
Adding his equations (49) and (50) to eliminate p, gives

8_0( w W, 6_0!_p1—p2
ot 2 o0z 2L

oa

As a further enhancement to the equations of Nguyen’s paper, let us assume that the
phenomenological coefficients are not equal. It is then easily obtained that

8_05+ Lw, +Lyw, 5_06:]71_[72 . (35)
ot L+L, 0z L+L,

Now, if L, > L, and w, is of the same order as w, then the above relationship is approximately

oa 9% PPy
ot 0oz L,

These relationships are appealing because now the volume fraction change is governed by a
dynamical relationship in which the pressure difference between the two phases drove the phase
change. If the phases had the same pressure there would be no change in volume fraction. The
denominators on the right hand side, i.e. combinations of the phenomenological coefficients for
the two phases would determine how “fast” pressure equilibrium was attained. The phasic
advection equation, or volume fraction propagation equation, also exhibited an advection
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velocity that was a weighted combination of phasic velocities (weighted with the
phenomenological coefficients).

In 1983, Passman and Nunziato at SNL and Walsh at U. of Florida published a report [Passman,
Nunziato, and Walsh 1983], later to become Appendix 5C of Truesdell’s classical work on
rational thermodynamics [Truesdell, 1984]. In addition to the traditional axioms of balance, an
additional balance axiom was elegantly postulated which describes changes in volume fraction.
They utilized the idea of workless constraints to describe a method of accounting, in the entropy
inequality for the mixture, for the constraint requiring that the mixture be saturated. This
resulted in a volume fraction propagation equation, which they called balance of equilibrated
force, which accounts for the fact that the constituent volume fractions can change without
affecting the gross motion. As they point out, this equation, in a sense, models the
microstructural force systems operative in multiphase mixtures.

{Note: This approach has not seen much acceptance in the two-phase fluid flow community,
probably because the equation derivation was postulational [Truesdell, 1984] (as opposed to
using some type of averaging) and because of the lack of physical familiarity with the
terminology. However, some years later, Dobran at New York University published a
monograph [Dobran, 1991] in which rigorous volume averaging is utilized, along with a basic
material deformation postulate, to derive additional transport equations for multiphase mixtures
that are very similar. }

Later in 1983 Baer and Nunziato of SNL released a two-phase mixture theory describing the
deflagration-to-detonation transition (DDT) in reactive granular materials [Baer and Nuziato,
1983], later published in the open literature as [Baer and Nunziato, 1986]. However, perhaps
because of the application context, in addition to its postulational derivation, this method
received little attention from the two-phase fluid dynamics community. In this work the entropy
inequality for the two-phase mixture was utilized to directly establish a constitutive volume
fraction propagation equation, which (in the context of their application) they called the
compaction equation (with phase change)

oa, 0 . oo :r
R ﬂf[ps‘(pﬁﬂsﬂ*;— (36)

s

where [ is a configuration pressure which resists changes in the packing of the bed or
compaction and the coefficient x4 is a compaction viscosity (again in their application context)

which controls the rate at which pressure equilibrium is reached. Though derived in a different
manner, this equation can also be viewed as a simpler, special case of Passman et.al.’s balance of
equilibrated force equation, mentioned above. This 7-equation compressible two-phase model of
Baer and Nunziato was hyperbolic and well-posed. They also constructed apparently successful
numerical solution algorithms for this equation set. While the motivating applications for this
model are far different from those of the two-phase, nuclear reactor fluid dynamics community,
the foundational principles are very similar. Notice the similarities between their volume
fraction propagation equation and that of Nguyen over two years earlier.
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Baer and Nunziato’s volume fraction evolutionary equation can be more generally stated as

+

0 0 oo .
g;a TV, ;ﬂ :; ,Uj,aj [pa_ﬂa_(pj_ﬁf)]+;_ (37)

a

where S, are configuration pressures and exchange coefficients y; , reflect interactions between
the phases. These rate equations, which provide closure of the mixture model, are force balances
involving the configurational pressures, phase pressures, and a viscous-like stress associated with
rate-dependent volume fraction changes. The relaxation coefficients, 4, , , have the units of
viscosity.  Moreover, like Nguyen’s (but unlike Passman et.al.’s), these equations are
constitutive equations, not field equations. As pointed out in [Baer, 1997], they reflect boundary
conditions at the microscale. [Saurel et.al. 1994] recast the volume fraction evolution equation

as a microscopic mass density evolution equation. [Kashiwa and Gaftney, 2003] derive a mass
density evolution equation having a somewhat different character.

To more intuitively see the need for a dynamic volume fraction evolution equation consider a
cell mixture physics model for two-phase flow. Consider a fixed volume V' with two immiscible
constituents present (e.g. the two constituents may have been advected into a fixed cell volume).
They have masses m, and m, occupying volumes ¥V, and V, , respectively, such that

Vi+V, =V .
Each constituent phase has material density p, and p, , so

V=V +V,
m . my

P P

or

L
4

=a,+a,

1

m, m,

Veo Vp,

Y V. . .
where o, = 71 and a, = 72 are volume fractions of each phase. For each constituent

o oand p="2 (38)

pl:V1 v,

and
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b :fl(pl’jl)

m (39)
1 I/l 1
pz = /‘2 (pz s ]2 )
: 40
_rfm g (40)
£
Now V, and V, are adjusted (subject to the ¥, +V, =V constraint) until the phase pressures are
equal to
m m
pzji[?:’llj:ﬂ(f’lzj’ (41)
with the equilibrium (or equilibration) pressure, p . At this equilibrium pressure the

corresponding phase volumes yield the equilibrium volume fractions

This can be accomplished more generally in a dynamical fashion as follows. First, note that

D :f1(p1911)
m,
= —’]
l[alV lj

P :fz(pzalz)

:fz[&’lzj
a

,V
and also that
da, __da,
dt dt
d’e, d’a, .
dr’ dr’
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Intuitively, we now consider the dynamical equation

% b P ) (42)

dt T

If o, is compressed too much (p, > p,) then ¢ will increase with time (relax) letting p,

reduce while «, decreases letting p, increase. This process ends when p, = p, = p and thus
da,

r =0 . The relaxation rate, 7 , controls the rate at which the phases (pressures) equilibrate.
4

More generally yet, we could even write

2
1
dr*

a4,

(microinertia) . + (compaction viscosizfy)- = (microstructuml forces) 43)

=F

The microstructural force F' is a relaxation term that is intended to model the driving force or
“resistance” exhibited by the mixture to changes in its configuration. For example, if we were
compacting a gas-solid particle bed,

e, (ps—pg—,[)’s) for p.—pB >0 (44)

in accordance with the view of compaction as an irreversible process. /. is the “configuration
pressure” of the bed.

If we set the “microinertial” and the “configuration pressure” to zero we are left with

da
/"7;:0[1“2 (p] _pz)

or
da, _a9 (pl _pz)
dt y7,

(45)

Note the multiplicative coefficient ¢ ¢, in the driving force / . This term is included for a

. . . . : A
couple of reasons: (1) a,a, is roughly proportional to the interfacial area per unit volume, 7’ .

and (2) better behavior results in the limit of single phase occurring due to disappearance of the
other phase, i.e. &, > 0(a, > 1) or @, >0 (e, > 1).

47



In 1998, Saurel and Abgrall [Saurel and Abgrall, 1999], who had used Baer and Nunziato’s
model with some slight reformulation for similar applications, and who had begun to generalize
it and apply it to other multiphase mixtures of interest in a fluid dynamics context, published
their 7-equation compressible multifluid/multiphase flow model. Neglecting microinertia,
surface tension, and covariance terms (and assuming no mass transfer between phases) their
variant is state as,

a@%+v-,5kﬁk =0 (46)
%+V'(ﬁkﬁk®ﬁk)+vm =p1Vak+ﬂ(17m—ﬁk) (47)
aﬁak—tE‘k—i_V'([_)kEkﬁk + i, ) =pu,-Va, + A, —i, )u, +u(p, - p,) P, (48)
%+u,-V0{k:,u(pk—pm) (49)

where @, p,=a,p,, U,, p, =a,p,, and E, represent the fluid phase k “volume fraction”,

mass density, velocity, pressure, and total energy, respectively. The non-equilibrium two-phase
flow model derived in [Saurel et. al., 2003], a variant of the original [Baer and Nunziato, 1986]
model, is preferred because of its symmetric formulation. In these models each phase is assumed
compressible with its own thermodynamics. The system involves 7 partial differential equations
(volume fraction and mass, momentum, and energy balance for each phase) and is hyperbolic.
These equations, which represent the balance of mass, momentum, and total energy, and volume
fraction evolution, respectively, with specific interphase transfer terms placed on the right-hand
sides. In these equations, (for a two-phase flow) k£ =1,2 and correspond, respectively, with

m=2,1; p, and u, represent the interfacial pressure and velocity. In the Baer-Nunziato model,
these variables are chosen as p, = p, and u, =, while the Saurel model utilized the following
interfacial values:

Z a, PyUy,

k=1,2
U, =—>— and p, = a.p (50)
S Nan , Z;z WDy

k=1,2

This model contains relaxation parameters A and g that determine the rates at which the
velocities and pressures of the two phases reach equilibrium. These equations are closed by the

saturation constraint for the volume fractions and an equation of state for each fluid, e.g. the
stiffened gas equation of state (which holds approximately for a broad range of gases and
liquids)

o +a,=1 (51)

pk:(7k_1)pk(€k_%)_7k7[k (52)

48



where ¢, is the internal energy and y, , g, , and 7, are constants, specific for each phase & .

Their model is unconditionally hyperbolic and well-posed, and is to be able to solve physical
situations for which other models fail. In the original Baer and Nunziato model, which has
become more popular in the literature and even has become known as the BN-model, u, is taken

equal to the velocity of the less compressible phase and p, , the interphase pressure, is taken
equal to the pressure of the most compressible phase. In Saurel and Abgrall, p, is taken equal to
the mixture pressure and u, to the velocity of the center of mass. In [Lallemand and Saurel,

2000] new and enhanced pressure relaxation procedures are presented for this method.

Generalizations of this theory have appeared in the literature such as the novel Discrete Equation
Method (DEM) [Abgrall and Saurel, 2003]. In the traditional approach presented above, the
microscopic level, single phase, partial differential equations (PDE’s) over an assumed phase
topology distribution were first averaged to obtain macroscopic level multiphase equations.
Then appropriate simplifying assumptions were made for the macroscopic level PDE’s. Finally,
though not discussed yet, the macroscopic multiphase flow equations are numerically discretized
and the resulting equations solved, using finite difference, finite volume, or finite element
methods, to obtain “standard” numerical solutions. With the DEM approach, one first assumes a
generic phase distribution topology. Then a discretized solution is developed within the
computational cell using, for example, Riemann and approximate Riemann relations. Finally,
this partial solution is averaged over the cell volume and time to obtain a meaningful solution.
The DEM method carries a pressure and velocity for each phase, and because it effective only
solves Euler equations locally, the method is hyperbolic and well-posed, and it gives correct
wave dynamic solutions. But it offers an additional bonus; for example, [Chinnayya, Daniel, and
Saurel, 2004] use this new homogenization method (DEM) to obtain, not only the seven equation
model above, but also explicit closure formulas for p, and u, that are symmetric, compatible

with the second law of thermodynamics, and responsible for the fulfillment of interface
conditions when dealing with contact/interface problems; they also provide a general explicit
formula for g . Furthermore, in the acoustic, continuous limit this method leads to the equation

system (for simplicity with no mass transfer)

oa -
—+Va, i, = u(p, - p,)
ot
M-FV(OCPZJ)] =0

ot
%+V-(dpﬁ®ﬁ+apl)l =p,Voy +A(u, —i) e
d(apE i i iy - (1, — ’
%‘FV[OZ(/)E"']?)ML = Py 'val +ﬂu[ .(uZ_ul)_‘up[(p1 _pz)
M_g_v-(apﬁ)zzo

ot
apt),

or +V-(apu®u+apl),=pNVa,-Au,—u)
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d(apk), "

ot V-[Ot(pE+p)ii]2 =pu;-Va, _ﬂﬁ; (u, _7’71)+/1p1’(p1 -D))

_ 1. . : : .
where o, p, U, p, E (E= e+5u -u ), and e represent the volume fraction, density, velocity,

pressure, total energy, and internal energy, respectively.
The interfacial variables have been determined in [Saurel et. al., 2003] to be

i :Zlﬁl+227’72 n Va, p,—p
" Z+7Z, |Va|Z+Z,
Lp+Zip, 42, Va

= + (U, —u,) .
Pr Z,+7, Z+@W%“2 )

These variables correspond to the interface velocity of, and pressure exerted on, the surface of a
two phase control volume, i.e. at locations where volume fraction gradients are present. The
average interfacial velocity and pressure acting inside the two-phase control volume are given by

p _ Zu, +Zyu,

e M 3
Z,+7Z,

" Z,py+2Z,p,
Z, +7Z,

1

Mechanical non-equilibrium is represented with a relaxation process whose rate is controlled by
the following parameters:

A= % uZ Z, (velocity relaxation rate)

A[

=———— (pressure relaxation rate),
Z,+7Z,

Y7,

where A, represents the specific interfacial area and Z, the acoustic impedance of phase &, i.e.

Zy = Prcy-

Reduced or Relaxed Equation Forms

The single velocity pressure equilibrium model corresponds to the one of [Kapila et al., 2001]. It
has been obtained as the asymptotic limit of the [Baer and Nunziato, 1986] model in the limit of
both stiff velocity and pressure relaxation. In involves 5 partial differential equations, four
conservative and a non-conservative volume fraction equation. The speed of sound resulting
from this model corresponds to that of [Wood, 1930] which exhibits a non-monotonic variation
with volume fraction. These two difficulties (non-conservativity and non-monotonicity) present
serious computational challenges. To circumvent them, [Saurel, Petitpas, and Berry, 2009]
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constructed a pressure non-equilibrium 6-equation model (based on the first reduced model in
Kapila et al., 2001) which is also non-conservative, but easier to solve with a relaxation method.

The [Kapila et al., 2001] model is the zero-order approximation of the Baer and Nunziato model
with stiff mechanical relaxation. In one dimension (with no mass transfer), with consideration of
only two fluids, the model is given as:

aa,
+u 5 —
ot ox  p L PG Ox

oy _ pcs’ —pc’ Ou

2 a,

dap),  dap)u _,

ot ox
o(ap),  dephu _,

ot ox
dpu . dou’+p
ot ox
PE N O(pE+pu

Ot ox

(54)

0

0

1 . )
where o, p, u, p, E (E :e+5u2 ), and e represent respectively the volume fraction, the

mixture density, the velocity, the mixture pressure, the mixture total energy and the mixture
internal energy. The mixture internal energy is defined as

e=Y e (p,p,)+tY,e,(p,,p) (55)

and the mass fraction is given by: ¥, = (@p), .

The mixture density is defined by p = (ap), +(ap), .
Each fluid is governed by its own convex equation of state (EOS),

e, =¢e.(p>p),
which allows the determination of the phases’ sound speed,
Ck :ck(pkvp)'

The mixture pressure p is determined by solving equation (55), for which, in the particular case
of fluids governed by the stiffened gas EOS

Py :(7k _l)pkek = Vi Pok > (56)
the resulting mixture EOS reads,

pe_(alj/]pool +a27/2p002]
7n—1 7, —1
al

p(p.e.a,a,)= (57)
+&

n-1 y,-1
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It is straightforward to obtain the entropy equations:

B o p=12.
di

Consequently, this model needs specific relations for its closure in the presence of shocks. In the
limit of weak shocks, appropriate shock relations have been determined in [Saurel et al., 2007]:

Y, =Y,
pu—-o)=p"u’-o)=m,
p—p'+m(v—v")=0, (58)

0
+ *
e~ + - =0,

where o denotes the shock speed and the upperscript ‘0’ represents the unshocked state.
These relations have been intensively validated against a large experimental data base for weak
and strong shocks in the same reference.

Also of interest, [Guillard and Murrone, 2005] use asymptotic analysis, in the limit of zero
relaxation time, to reduce the 7-equation two-phase equation model (which contains relaxation
terms that drive the system toward pressure and velocity equilibrium) to a five equation reduced
hyperbolic system. In [Saurel, Petitpas, and Berry, 2009] a new equation system, relaxed
(reduced) from the seven equation model, and numerical method are presented to efficiently
perform DNS-like simulations with the diffuse interface method (DIM) approach, and in
[Petitpas, et al., 2009] this DIM approach is extended to treat severe flashing with phase change
along with an additional non-condensible gaseous phase.

The advantages of this approach is rapidly being recognized. It is important to get the correct
wave behavior during transients and mathematical formulations as well as numerical methods
must be clean. The methods discussed above provide this behavior and insure well-posedness,
for both averaged multiphase flow models and DNS-like models.

Appendix Supplement: Moment Evolution Equation

It is critical that special attention be given to functional dependencies in deriving the moment
evolution equation. Beginning first by defining the ensemble average of some property O, as

(Q)(%1)= [0,(T,) f (%.0.T,)dT, (A1)
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where, for example, Ty ={p,.4,¢,, X,,X,,---}, note that, while O, depends explicitly upon the
state I, its average value <QO> depends upon position X and time ¢, which it acquired from the
probability function f(%,7,;). In fact, <QO> loses its explicit dependence upon I'; by its very

definition as an integral over all possible states I';.

The variation of the probability is

df = adef ax +—— 2h -dl’,,
ot ox or,

so the time variation of the probability can be written

gd_Y g
i 8t+ VT, - o, (A.2)

Multiplying this equation by O, (T,) and integrating over I -space gives

dfdr—

[o, | Q0 dF + [Qy -V T+ [ Q)T f dF (A.3)

Upon further examination of each term of this expression shows, since O, does not depend
explicitly on time, 7, that

afdr = j%dro

:5 _[Qofdro
0 -
=5<Q0>(x,t).

[ (T,

Similarly, since Q, is independent of X ,

[Qjiiy-Vf dU, = [V(Q,f)-,dT,
= [V-(Qyiiyf)dT, = [ Quf (Vi) dT,
=V [Qjii,f dT,~ [ Q,(V i) f dT,
=V Qi )(%,1)—(QV -1y )(%,1).

In addition, the T, are independent of T, , so
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Jor,: f

ar o =T, on r,
:fo'{j (Qof J'f(aQodr}

. .. 0
= 1Ho 'Q0f|1imit of T, v[ro . 819)
0

:o-<f0.aQo>
or,
__[9% 4Ty
Co\er, di

do, .
:_<7Qt> = —<Q0>(x,t).

As long as the Q, are physically conserved quantities then

Jdr,

af - _
jQOEdro_o.

Putting all these expressions back into the integral equation above gives the moment evolution
equation (11)

2(0,) .
ot

V-<Q0L70> = <Qo +Qov'i’0> :

[[ Notice: By comparison with Equation (1.1) of [Kashiwa and Rauenzahn
1994],

a<§°> +V Oyl ) = <r aQ°>+ jQO =l —=—dr,,

theirs should read

<Qo> - aQo = Df
or +V- <Q0 0> 1—‘0'61_‘0 +<Q0v'u0>+J.QOEdF0

= <Qo +O,V- ”0> IQO b dr,

to be correct. ||
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